
Unified Formulation of the Aeroelasticity

of Swept Lifting Surfaces

PIERGIOVANNI MARZOCCA*, LIVIU LIBRESCU 't

and

WALTER A. SILVA*

*Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061-0219, USA.

and

*NASA Langley Research Center, Hampton, VA 23681 -2199, USA.

Office:

Fax:

t Corresponding author

(540) 231 - 5916 Home: (540) 953 - 0499

(540) 231 - 4574 Email: librescu@vt.edu

Running Title: Unified Formulation of the Aeroelasticity of Swept Lifting Surfaces



Unified Formulation of the

Aeroelasticity of Swept Lifting Surfaces

Piergiovanni Marzocca" and Liviu Librescu*

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219,

and

Walter A. Silva*

NASA Langley Research Center, Hampton, VA 23681-2199.

Abstract

An unified approach for dealing with stability and aeroelastic response to time-dependent

pressure pulses of swept wings in an incompressible flow is developed. To this end the indicial

function concept in time and frequency domains, enabling one to derive the proper unsteady

aerodynamic loads is used. Results regarding stability in the frequency and time domains, and

subcritical aeroelastic response to arbitrary time-dependent external excitation obtained via the

direct use of the unsteady aerodynamic derivatives for 3-D wings are supplied. Closed form

expressions for unsteady aerodynamic derivatives using this unified approach have been derived

and used to illustrate their application to flutter and aeroelastic response to blast and sonic-boom

signatures. In this context, an original representation of the aeroelastic response in the phase -

space was presented and pertinent conclusions on the implications of some basic parameters

have been outlined.
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Nomenclature

a,, Dimensionless elastic axis position measured from the midchord, positive aft

c,, Chord length of wing, normal to the elastic axis, 2b,,

CL_. Lift-curve slope

C(k)_ F(k)_ G(k) Theodorsen's function and its real and imaginary counterparts, respectively

L, f_ Plunging and pitching deflection functions

h, t_, Plunging displacement and its amplitude, respectively

Hi, Ai Dimensionless unsteady aerodynamic coefficients

Li, M i Dimensionless unsteady aerodynamic complex coefficients

i Imaginary unit, .,/2-7

ly, 7,_ Mass moment of inertia per unit length of wing and the dimensionless radius of

gyration, (Is/mb2. )t/2, respectively

l Wing semi-span measured along the mid-chord line

lh Dimensionless aerodynamic lift, L.b./mU,_

AL. ,AM. Total lift and moment about the elastic axis per unit span of the swept wing

Lb,l b Overpressure signature of the N-wave shock pulse and its dimensionless counterpart,

rn,_

m a

N

P_,gam

r

s ,o_

So,L

I ,_'O,T

U, U,,

v.
X

y

W

Z

Z

a ,0_ 0

8_

Lbb ./mU_ , respectively

Wing mass per unit length and wing/air mass ratio, rn/lrpb 2 . respectively
2 2

Dimensionless aerodynamic moment, M.b./I;,U.

Load Factor, 1 + h"/g

Peak reflected pressure in excess and its dimensionless value P.,b./mU2., respectively

Shock pulse length factor

Laplace transform variable and operator, respectively

Static unbalance about the elastic axis and its dimensionless counterpart. Sy/mb,

respectively

Time variables and dimensionless time. U.t/bo, respectively

Freestream speed and its component normal to the elastic axis, respectively

Dimensionless free-stream speed, U./b.o) a

Coordinate parallel to freestream direction

Chordwise coordinate normal to the elastic axis

Coordinate perpendicular in the freestreem direction

Spanwise coordinate along the elastic axis

Downwash velocity

Transverse normal coordinate to the midplane of the wing

Vertical displacement in z direction

Twist angle about the pitch axis and its amplitude, respectively

Tracer quantity

Structural damping ratio in plunging, Ch/2mO) h and in pitching, c,_/21yco_ , respectively



A,O"

A

P

gp

Dimensionless coordinate along the wing span, y/l

Spanwise rate of change of twist and bending, respectively

Swept angle (positive for swept back)

Dimensionless plunge coordinate, w / b.

Air density

Dimensionless positive phase duration of the pulse, measured from the time of the arrival

O(r), _(s)Wagner's function in the time and Laplace domains, respectively

m,k. Circular and reduced frequencies, a,,b / U., respectively

coh,o_,_ Uncoupled frequency in plunging, (Kh/m) '/2 and pitching, (K_,/I_)1/2, respectively

_ Plunging-pitching frequency ratio, wh/o_

Subscript

( • )c Circulatory terms of lift and aerodynamic moment

( • )nc Non-circulatory terms of lift and aerodynamic moment

( • ),, Quantity normal to the elastic axis

A( " ) Quantity associated with the swept wing

Superscript
^

( ) Variables in Laplace transformed space

( • ), ( •) Derivatives with respect to the timer, and the dimensionless timer, respectively

1. Introduction

In this paper, the concept of the linear indicial I-3 functions in the time and frequency domains

is used to determine the associated unsteady aerodynamic derivatives for swept lifting surfaces.

Such a treatment of the problem enables one to approach either the open/closed loop aeroelastic

response in the subcritical flight speed regime to arbitrary time-dependent extemal excitations

(such as e.g. gusts, airblasts due to explosions or sonic-boomsn-S), or the flutter instability of

actively controlled/uncontrolled swept wings. In this paper both problems are addressed.

As by-product of this analysis, a close form solution of the unsteady aerodynamic

coefficients is obtained that is directly used in the stability and aeroelastic response problems.

The unsteady aerodynamic lift and moment in incompressible flight speed regime are

expressed for the swept aircraft wing in the time and frequency domains by using the Wagner

and Theodorsen functions, respectively. For the response of dynamic systems it is only necessary

to express the lift and moment via the indicial Wagner's function. For the approach of the flutter

problem, the Theodorsen's function helps the conversion of the expressions of both the

aerodynamic loads and the unsteady aerodynamic derivatives in the frequency domain 6-7.
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Herein the case of a 3-D lifting surface, including the plunging and pitching degrees of

freedom is considered for flutter and response analyses.

2. Preliminaries

As shown in Ref. 8, for zero initial conditions, the unsteady aerodynamic loads can be

converted from the time to the frequency domain via a Laplace transform. This results in the

possibility of using the correspondence s _ ik, as to convert the unsteady aerodynamic load from

the time to the frequency domain, where s and k,, are the Laplace variable and the reduced

frequency, respectively. The Laplace transform operator _is defined as:

In this sense, the Wagner's function ¢(r) is connected with the Theodorsen's function C(/¢. ) via a

Laplace transform as: (2)C(k n )_ F(k n )+iG(k. ) _ F_(r) -ik.r dr = *(ik n ),
ik n ik n ao

-1

and vice-versa: ¢(z) = _7 {C(k,)/ik,}, Re(ik,,)>O. (3)

and having in view the correspondence s _ ik n we can also write:

( ) -- J'o =4(s)._ ikn ik. -_ s (4)

Using this relationship, it is possible to obtain the full expression of unsteady aerodynamic

coefficients in terms of the Theodorsen's function C(kn) and its circulatory components

F(k n) and G(k n). It is interesting to note that the reduced frequency parameter kn for swept and

for straight wings coincide: k, - a_. _ o._bcosA _ _ _ k and io.)t = iknv. (5)
U. U_ cos A U_

This implies that the indicial Wagner's function ¢(v) remains invariant to any change of the

sweep angle.

3. Analytical Developments

For swept wings, the total lift per unit span, can be expressed in the form:

h La(y,t)=hLc(y,t)+hL.,.,(Y,t)+hL.c2(Y,t)+^L.c3(Y,t) • (6)
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where the indices c and nc identify the various contributions associated with the circulatory and

non-circulatory terms, respectively. Using similar notations, the total moment per unit span about

the elastic axis is:

AM_ (y,t)=A Mc (y,t)+AM,c,(y,t)+AM,,c2 (ff, t)+^M,c3(y,t)+^ M,c_ (y,t), (7)

^M,_,(y,t) being associated with the apparent moment of inertia 9. Herein the lift is positive

upward, while the moment is positive nose up. For the sake of convenience, herein the plunging

coordinate is positive when is downward (see Fig. 1-3). Expressing the vertical displacement Z

of a point on the center line of the wing as, (Fig.2):

Z(_, -fi,t )= h(y,t )+ -_a(y,t ), (8)

where h-h(y,t), a-a(y,t) are the displacements in plunging and pitching, respectively, and

assuming that the origin of the Y axis coincides with the elastic center, the downwash velocity w

normal to the lifting surface becomes:

w(x, y,t)- w(_, y,t) = 0Z/oat + U_ oVZ/3£. (9)

The in-plane chordwise coordinate y normal to the elastic axis (see Fig. 2) can be expressed as:

-£=b,(l/2-a,,). (10)

Consequently, using the dimensionless timer(- U,t/b, ) Eq. (9) becomes:

w(-Y'Y'r)=un(h' +°t+OhtanA+(1/2-an(a'+bn-_tanA)) "(,bn off (11)

Herein, b,, is the half-chord of the airfoil, U,, is the component of the flow speed, both normal to

the elastic axis and (.)'-O(.)/3r. The quantity in Eq. (11) undescored by a solid line is usually

discarded in the specialized literature l'l°, as being related to the wing camber effect. However,

herein this effect will be taken into consideration.

In the following sections, the unsteady aerodynamic loads in an incompressible flow can be

obtained in time (3.1.a) and, with the use of the Laplace transform space in the frequency (3.1 .b)

domains.



3.1 Unsteady Aerodynamic Loads in Incompressible Flow

3.1.a Time Domain

The circulatory components of the lift expressed in terms of Wagner's indicial function ¢(z)

(referred also to as heredity function) obtained in time domain 9 is:

Zo h--[+a'+O2h tanA+(1-a, o_oaZoAL'(Y'Z)=-CL'_"b"pU:;_(z-(t_ aydz o ,2 I a'+bn 02_ tanA)_ z°' (12)

As concern the aerodynamic non-circulatory components, using the dimensionless time these

are expressed as:

ALn,.,(Y,v):-2CLa. PUZ[h'-a.bna"],

_ 1 22 F
A L

nc3(y,z)=--_CL_.pUnb, tanA[(_r +

| 2 •

AL.cz(Y,v)=-_CL,_.pUnb.o_ ,

j,
(7

1_+6r_+5 OGtanA

E 1+ a.CLa pU2b3tanA (5 r +l)-7---+Sr °3'_'tanA

" (13)

Using the expression of the lift, Eq. (6), the equation for the moment, Eq. (7), can be cast as:

^ m.(y,t)=-O/2 + a.)b n ALc(y,t)-anbn ALn,, (Y't)

+ O/2-a. )b. ALnc2 (y, t)+ AM,c3(Y,t_" AMnc (y, t), (14)

in which the last two non-circulatory components, using the dimensionless time, are expressed

as;

l C 231 1 23 [ |) _t ..]_ ar/_AM.c3(Y,Z)=--_ Lc,.pUnbn . onA tan A + _ CLc,. pU. bna. tan A (_5r +

+SrOCrtanA]-lcLc, pUZb4(l+a21tanA[(Sr+l)-_-+5 3_" ],' t_ ) t_ --_- tan A , (15)

1
AMnc (y,'r)=--_ pCLc_ b_U Z.off"• (16)

Herein, the spanwise rates of change of bending and twist, (7 and &, respectively, are expressed

as cr = Oh/o_and _. =3a/o_. In these equations, as well as in the following ones, the terms

affected by the tracer 5 r are generated by the last term in the expression of the downwash

velocity (Eq. (11)), (term underscored by a solid line). When these terms are discarded, being

considered negligibly small, S_ = 0, otherwise _r = 1.

Replacement of Eqs. (12) and (13) in Eq. (6) and of Eqs. (13), (15) and (16) into Eq. (14),

results in the unsteady lift and aerodynamic moment expressed in the time domain. Concerning
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the circulatory part, Eq. (12), this can be explicitly determined by transforming this expression in

the Laplace domain using the relationship between the Laplace transform of the Wagner and

Theodorsen functions, namely C(-is)/s=_.T (4_(r))=q_(s) and afterwards inverting back the

obtained expression in the temporal space. Alternatively, in order to ease the computations, the

available approximate expressions for ¢(_) and for C(k) 9'1t-14 can be used in the Laplace

transformed space (see also Ref. 15 where the representation in terms of exponential polynomials

and quasi polynomials was used to approximate the supersonic unsteady aerodynamic loads,

representation that can be applied also for this case, as well).

The expressions of lift and aerodynamic moment in the time domain, ^L,(y,r) and

^Ma(y,T ) can be used to determine the subcritical aeroelastic response of swept wings.

However, when the aeroelastic response of wings to time-dependent external excitations, such as

gusts, sonic-boom, blast pulses, etc. is required, the unsteady aerodynamic loads in the time

domain, A L,, and A M., have to be supplemented by the ones corresponding to above mentioned

pulses. This will be considered in the next developments and an illustration of the capabilities

provided by this unified method will be given.

3.1.b Frequency Domain

Upon replacing s---_ik,, in the Eqs. (6) and (14) converted in Laplace transformed space;

using the relationship between Laplace transform of Wagner and Theodorsen's functions (Eq.

(2)); representing the time dependence of displacement quantities as:

a(y, T)= fa (Y)a(T, kn )= fa (Y)ao eik"r,

and expressing:

AL, (y, k,,r)=A L-, (y,k,)e 'k"_,

h(y, T) = fh(Y)'h(T, kn )= fh(Y)ho eik.r ,

A ma(Y, kn,T)=A'Ma(Y, kn)e ik"r ,

(17 a)

the equations for the unsteady lift and moment amplitudes can be expressed in the frequency

domain (Appendix A). These expressions in the frequency domain can be used in the flutter

analysis of swept aircraft wings. These coincide with the ones obtained differently in Ref. 16.

In this analysis fc_ (7)and fh (Y)are chosen to be the decoupled eigenmodes in plunging and twist

of the structure, and are determined as to fulfill identically the boundary conditions. These are

expressed as:

(17 b)



sinh fll + sin fll (cos flit/- cosh flit/)+ sinh flit/- sin fllO I'fh(Y)=Fh(rl==-Y/l)=Cl coshfll +cosfll

fa (7) = F_ (rl - y/l )=C2 sin tier/,

(18)

(19)

where for the first bending and torsion we have /3z = 0.5969z and 32 = 7r/2. The constants C 1

and C 2 are chosen as to normalize fh(Y) and f,_(y), and so to get the unitary maximum

deflection at the wing tip. The uncoupled first bending and torsion mode shapes were needed for

the evaluations of the terms in the Eqs. (A. 1) - (A.8) and are shown in Ref. 17.

3.2 Unsteady Aerodynamic Derivatives in the Frequency Domain

In this section close form solution of unsteady aerodynamic coefficients have been derived

and their use in the process of unifying the aeroelastic formulations for flutter and response

analysis of swept aircraft wings have been emphasized.

A careful inspection of equations for lift and moment expressed in the time domain, Eqs. (7)

- (8), suggests the following representations for the lift and aerodynamic moment:

AL. (Y,k.,z) I=-_pU.22b. k.H, h"k-knH2Of"+k2nH30_+k:O4-ff'nn+Osa'wH6-_nb. , (20)

AMa(y,k,,,t.) l 2 ( h' , h h")=-_pU, 2b 2, k,A,-_+k, Azcz +k2nA30_+k2nA4-_+ Aso_" + A6-_n . (21)

Herein, Hi, Ai denote the dimensionless unsteady aerodynamic coefficients, and where kn has

been included as to render the quantities in brackets nondimensional. In a simplified context,

such a mixed form of the lift and moment was used in Refs. 18 and 19. The unsteady

aerodynamic derivatives for swept wings are obtainable from the previous equations of lift and

aerodynamic moment, by assuming harmonic time dependence of displacements quantities. In

such a way, the frequency domain counterpart of Eqs. (28) - (29), expressed in compact form,

becomes:

Ar,(Y,k,): pU_k_b,( h° L, +aoL2 )lb, -- (ho M )AM_,(Y,k.) : pU2k2.bZ._b" , +aoM2 .
(22)

Herein, the unsteady aerodynamic complex coefficients Li and Mi can be expressed in terms of

unsteady aerodynamic derivatives as:

LI = itll + 1214, L2 = i[t2 + 1213, M I = if11 + A 4 , M 2 = iA 2 + 4 3 • (23)



where, for the sake of convenience, these are written as:

Iglt = H,,_I 2 = H2,t_13 =(H 3 - H s ),17t4 =(H 4 - H 6 ), (24 a)

and A1=AI,A2=A2,A3=(A3-A5),A4=(A4-A6). (24b)

The close form solution for the unsteady aerodynamic derivatives in the frequency domain for

swept wings will be obtained from Eqs. (22), expressed in terms of Wagner's function _(ik,, ).

Separating the real and the imaginary parts of these expressions, the unsteady aerodynamic

derivatives result under the form displayed in Appendix A. These include also the spanwise rates

of change of bending and twist, o" and _, in terms of derivative in space of the shape functions,

which are associated with the sweep effect. For straight wings these terms become immaterial.

Notice that, the unsteady aerodynamic loads coincide with the ones obtained differently in Ref.

16, and when specialized for Sr =0, with the ones of Ref. 1. The direct use of the aerodynamic

derivatives in the Eqs. (20) and (21) will help us to solve the eigenvalue problem associated with

determination of the flutter instability. On the other hand, their Laplace transformed counterpart

is helpful in the aeroelastic response analysis, wherein the equations of motion are converted to

an algebraic systems of equations in the Laplace space. Notice that the flutter analysis can be

conducted also in the Laplace space domain. In this case, classical methods such as U-g and p-k

methods can be used in the Laplace transformed space.

3.3 Aeroelastic Response of a Swept Wing to Blast and Sonic-Boom

Pressure Pulses. Flutter Instability Derived from the Response.

An application on the flutter instability and the aeroelastic response of a swept wing to blast

and sonic-boom pressure pulses will be given in the next developments. The aeroelastic

governing system of equations of a swept wing featuring plunging and twisting degrees of

freedom to blast pressure signatures, expressed in dimensionless form, can be cast as:

32w 320 La(y,t)=Lh(y,t ), (25)E1 + m --_ - S _, _t---5- -

GJ _20 02----_w- 220 M (y,/)=0 (26)
_)y----i-+ S_ _t 2 ly _t----5- -

For the cantilevered wing, the related boundary conditions are:



/ =o and (a2w( '') 1w(y,t)- _ - 3=0 _ oqy- - o_T - _-f =0 (27)
y=l

Use of shapes functions, given by Eqs. (18) and (19), the aeroelastic governing equations in

dimensionless form become:

_'(T)+ _,,_0"(_)+ 2_h (g/V,)_'(V)+ (_/V,)2 _(v )-- l, (v)= Ib(_), (28)

(_--_/-F_)_"(_ )+ 0"(_ )+ (2_,_/V,)9(T )+ O/V, 2,- ,n_ (_ )= 0, (29)

The nondimensional parameters appearing in the preceding equations are displayed in Appendix

B. Moreover, all these quantities are based on sections normal to the reference axis.

The dimensionless sonic-boom overpressure signature of the N-wave shock pulse, can be

expressed as follow:

Herein, the Heaviside step function H('r) has been introduced in order to describe the typical

pressure time-history for sonic-boom loads; go,, denotes the dimensionless peak reflected

pressure in excess of the ambient one (see Refs. 4,5,20 and the references therein); re denotes the

positive phase duration of the pulse measured from the time of impact of the structure; r denotes

the shock pulse length factor. For r = 1 the N-shaped pulse degenerates into a triangular pulse

that corresponds to an explosive pulse (Fig. 4.a), and for r = 2 a symmetric N-shaped pulse is

obtained. A depiction of l b/_'0,, VS. time is displayed in Fig. 4.b.

Equations (28) and (29) can be converted to the Laplace transformed space and solved for the

unknowns, _ (- oT (4)) and 0 (- o£ (0)); inverted back in time domain one obtain the plunging

and pitching time-histories and the load factor time-history due to the sonic-boom pressure pulse,

_(_) - _Z'-' (_(s)) and 0(1:) - _'" (O(s)), respectively. Notice that, in this unified approach, when

Eqs. (28) and (29) are converted in the Laplace transformed space, the expressions of

aerodynamic derivatives expressed in the Laplace space can be used directly.

Moreover, when the dynamic response of the actively controlled lifting surface is analyzed,

also the feedback control forces and moments, that are time dependent, have to be included in

Eqs. (25) and (26).
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when the concept of the boundary feedback control 2123 is used, the boundaryHowever,

conditions at the wing tip, Eqs. (27) have to be completed by the related control forces or

moments.

4. Results and Discussions

Using the idea developed in Ref. 24, a modified strip theory has been developed as to address

the problem of the aeroelastic response (for open/closed loop aeroelastic systems), by capturing

also the 3-D effects. For swept wings, the local lift-curve slope CL_" for sections normal to the

elastic axis are obtained from the aerodynamics of swept wings 24, and are expressed as

cLa° = CLa/cosA where CL_ = CL_ AR cos A

cos ACLa/n" + AR_[I+(CL, _ cos A/(r_AR)) 2

in which also the correction for the aspect ratio AR has been included j°'25.

As a by-product of this analysis, a general close form solution for the unsteady aerodynamic

derivative for swept wing are also included. Moreover, in the case in which also the

compressibility effects are considered, the respective indicial functions for the compressible

subsonic, supersonic and hypersonic flight speed regimes, have to be modified as to include also

these effects.

In general, the corrective terms identified by the tracer _5r do not modify the trend of

coefficients. For small aspect ratio wings, the maximum influence of the corrective term is

present in the first plunging coefficients /4_. Usually, for all coefficients, the effect of these

terms becomes larger for higher sweep angles and for larger values of the parameter a,.

Whereas, for smaller aspect ratio wings, the effect of the camber becomes significant, and as a

result it should be included, for higher aspect ratios, this effect becomes negligibly small.

The aspect ratio AR parameter plays an important role on the coefficients H4, A1 and A4, and

because these are correlated to the plunging displacement, the same role will be played on the

aerodynamic loads.

Notice that, for k _¢¢ the circulatory components of the Theodorsen's function assume the

values F(k)_ 1/2 and G(k)---)O, and the corresponding unsteady aerodynamic derivatives can be

determined, this being in agreement with the steady state solution for lift and aerodynamic

11



moment. In these developments, all the terms, including the aerodynamic ones associated with

and _2, have been retained. Usually, these terms are neglected but, due to the presence of high

frequency components in the blast pressure terms, their effect can be significant.

As a result, the coefficients Hs,H 6 and As,A 6 also subsist. Whereas the aerodynamic

coefficients /4j and ,42 are the principal uncoupled aerodynamic damping coefficients in

plunging and torsion, respectively, /-)2 and A1 are the coupled damping coefficients. As

concerns, the depiction of/-), and '4i versus 2_/k, this representation enables one to get an idea

of the variation of the respective quantity with that of the normal freestream speed U,. It should

be mentioned that the expressions of the lift and aerodynamic moment in the frequency domain

obtained using the correction of Ref. 16 coincide with the ones obtained here via indicial

function approach. These coefficients are directly applied to the flutter analysis and the results

are displayed in Fig. 5. The comparison concerns the flutter prediction via indicial function of a

cantilever metallic swept wing of _ = 4 and A = 30 ° . The results reveal that the predictions

provided by the present approach, i.e. U F =235 ft/s and w E =386rad/sare in excellent

agreement with those displayed in Ref. 1. In this graph the dotted lines represent the results

based on the assumptions in Ref. 1 whereas, the solid line represent those from the present

analysis including also the camber effect. The critical value of the flutter speed is obtained here

from the eigenvalue analysis of the homogeneous system of equation and at the same time from

the response analysis. The way to determine the flutter speed from response becomes clear from

the phase plane portrait (see Figs. 11-14), in which, for a certain restricted range of the flight

speed (in the vicinity of the flutter speed), a periodic response with constant amplitude is

experienced.

On the same figure, determined from the response time-histories, there is also indicated the range

in which the flutter instability occurs. The flutter predictions based on both methods show an

excellent agreement.

The graphs depicting the aeroelastic response time-history to blast pulses (i.e. explosive and

sonic-boom blasts) are displayed in Figs. 6 - 14. In each of these, the corresponding type of

blast/gust signature was indicated as an inset. In addition, the parameters in use for the

simulations, unless otherwise specified, are chosen as: Vn=l; p = 10; _ = 0.5; rc_= 0.5;_ = 0.125;
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_n= _c,= 0;an=-0.2)and (_m=l;'cp =15";r=-I or 2) for the structural and the load components,

respectively.

In Fig. 6 predictions of the aeroelastic response of a straight/swept wings to a gust load

(indicated in the inset of the figure) are presented. Within this plot both the exact and selected

approximate expressions of the Theodorsen's function (Ref. 1) are used. As is readily seen, the

differences occurring as a result of these approximations in the plunging time-history are

indiscernible, which allows us to infer about the high accuracy of the approximations involving

the expression of C(s). Nevertheless, for more complex wing configurations these approximate

expressions can be highly useful towards determining the aeroelastic response.

The graphs in Fig. 7 supply the dimensionless plunging (_-w/b,,) and pitching (0)

displacements, and the load factor (N-1 + w"/g, where g is the acceleration of gravity) time-

history aeroelastic responses to blast pressure pulse. It becomes apparent that an increase of the

wing sweep angle, results in a decrease of the severity of the pulse signature.

Moreover, the plunging-pitching coupling helps to reduce the amplitude of the aeroelastic

response _7. The load factor N has its maximum for "_ = 0, when the first impulse due the blast

load occurs.

Figures 8 highlights the effect of the speed parameter V, (-U,,/b_Ogc,) on the swept aircraft

wing (A = 15 °) subjected to blast pulses. It becomes apparent that the amplitude of the response

time-history increases with the increase of V,. Moreover, in a certain range of speeds, as time

unfolds, a decay of the amplitude is experienced, which reflects the fact that in this case the

subcritical response is involved. However, for the dimensionless speed parameter V, _--2.1, the

response becomes unbounded implying that the occurrence of the flutter instability is impending.

The effect of the mass parameter /1 (=m/rcpb;_) for swept wing of A = 15° is indicated in Figs. 9.

The increase of the mass ratio and consequently of the aspect ratio AR, (see Appendix A) results

in the increase of the plunging and pitching displacement amplitudes. Moreover, for higher mass

ratios and AR, the motion damps out at larger times.

It should be noticed that the response to sonic-boom pressure pulses involves two different

regimes (see Fig. 10); namely: one for which 0 < r < 30" that corresponds to the forced motion,

and the other one to _ > 30" belonging to the free motion. The jump in the time-history of N is

due to the discontinuity in the load occurring at r= 30". This jump doesn't appear for explosive
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pressurepulses,wherer = 1 (seeFigs. 7-9). Moreover,also in this case,when increasingthe

sweepangle,theeffectof theblastsignaturebecomeslesssevere.In Fig. 11a three-dimensional

plot depictingthedimensionlessplunging_ andpitching 0 deflection time-histories of a swept

aircraft wing (A = 15°) to blast pressure signatures vs. the normalized spanwise coordinate y and

the dimensionless time _" has been supplied for two different values of the dimensionless speed

parameter V,,, 1.00 and 2.5.

The evolution of the aeroelastic system can be graphically illustrated by examining its

motion in the phase - space, rather than in the real space, and recognizing that the trajectory

depicted in this space represents the complete time history of the system. Corresponding to the

flutter speed, that coincides with that otained from the eigenvalue analysis, the trajectory of

motion describes an orbit with constant amplitude, the so called center. For V < Vr as time

unfolds, a decay of the amplitude is experienced, which reflects the fact that in this case a

subcritical response is involved (stable focal point), while for V > Vr the response becomes

unbounded implying that the occurrence of the flutter instability is impending (unstable focal

point).

Figure 12 highlights a three dimensional phase space portrait (4 vs. _ and N ) of the

plunging time-history response to blast load of a swept aircraft wing (A = 15°) for selected

values of the speed parameter. As it is shown, the response becomes unbounded for V, = 2.1,

representing the critical speed in which the periodic solution has been obtained and implying that

the occurrence of the flutter instability is impending. To avoid its occurrence there are two

possibilities, namely, including a passive/active control methodology or acting on the sweep

angle A. In the latter case the idea is to use the capabilities of the aircraft featuring variable

sweep angle (e.g. F-14 Tomcat) as to reduce the oscillations and at the same time expand the

flight envelope.

Figure 13 shows the phase plane portrait and the relative 3-D plots (vs. the load factor N) for

selected values of the sweep angle A. With the increase of the sweep angle, the motion damps

out at smaller times, the amplitude of the response is lower and the load factor is lower as well.

In Figs. 14 a 3-D pictorial view of the motions in plunging and pitching around the flutter

instability boundary vs. the variation of the sweep angle are displayed. From these plots a

complete view of how the maximum maximorum of the admissible values of the amplitudes as
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function of the sweep angle are evolving. It clearly appears that acting on an aircraft featuring

swept wing angle variability, the subcritical aeroelastic response can be controlled in terms of the

plunging and pitching displacement amplitudes.

5. Conclusions

An unified treatment of the aeroelasticity of swept lifting surfaces in time and frequency

domains has been presented, and the usefulness, in this context, of the aerodynamic indicial

functions concept was emphasized. The time domain representation is essential towards

determination of the dynamic aeroelastic response to time dependent external loads, and in the

case of the application of a feedback control methodology, of the dynamic aeroelastic response

to both external time dependent loads and control inputs. The aeroelastic response have been

represented in both, the classical way, by displaying the time-histories of plunging - pitching and

load factor, and in an original phase - space context, that provides full information about the

behavior of the aeroelastic system. The frequency domain representation is essential towards

determination of the flutter instability. It was also shown how to capture the flutter instability

also from the response time-histories. In this sense, the inclusive approach used here will be

helpful toward the validation of the aeroelastic model via the comparison of the theoretical and

flight vibration test results 26.

Applications assessing the versatility of the methodology presented here toward the approach

of both the subcritical aeroelastic responses and flutter instability for 3-D swept aircraft wing

have been presented. The concept of the stability boundary and control of it via the use of the

variable-sweep-wing-geometry have been illustrated. The unified formulation presented in this

work can be extended as to approach it in various flight speed regimes 27-3° and to include also a

feedback control mechanism. Moreover, the methodology developed in this paper can assist

determination of the critical flutter speed from the investigation in flight or in wind tunnel tests

of the aeroelastic response of aircraft wings to pulse loading.
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Appendix A

Unsteady Aerodynamic Derivatives:

"F(k.) +(G(k.)+l(l+S,.)i._ Offh sinA/,1_I' =-C£'2'" _ f" _ k,, 2 077 2AR )

k,, _ 2 _ k,, [ 2 2AR )

4-1F(k,,II-a,,1 +1¢_ 11_ 0fa sinA _, ' ' Ozfa (sinA/2 12 " 011 2AR 2k,_ 0112 a,, --j_) ,

.,=CA.. ((l+a,, _(k.)f h +Ill+an IG(k,,)+lan(_r +i)0___ sinA)_,,[_2 ) k. 2 2AR '

).2k,, _[_" --_F(k,,)

I( 1 212G(k.) (._+i I. 21)-_ sinA+ -_-a,, ). -_. -{+a,, 2AR .

. 1 2_0 fc_ (sin A _"+((1-4a:)F(k,,)-(I-Sr2an) ) sin A-S.
2AR 4+ 2a" )--_--_ T_ ) ,

(( 1 IGk(k.)_ Ill 0fh+. la 02fh sinAll sinA 0

where the aspect ratio AR

coordinate 7/= y / l have

coefficients corresponding to straight wings are obtained.

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

is defined as AR=l,,/b,,cos2A and the spanwise dimensionless

been introduced. For A=0 the expressions of aerodynamic



Appendix B

Nondimensional parameters for flutter and response analyses:

_I b_

FFI 2 I _ '

P.,b,,

mU , f,?dr 1

_=h/b,,;
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_,_ -- c,_/2I,/G ;

v,,=u,,fl,,,_,_;
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Figure Captions

Fig. 1 Nonuniform swept wing.

Fig. 2 Airfoil section.

Fig. 3 3-D view of a swept wing.

Fig. 4 (a) Sonic-Boom and (b) Triangular Blast Pressure Pulses.

Fig. 5 Flutter calculation via U-g method (Ref. 1).

Fig. 6 Predictions of the aeroelastic responses of a straight/swept wings to a gust load, based on

exact and selected expressions of the Theodorsen's function.

Fig. 7 Influence of angle of sweep A on the aeroelastic response to a blast pressure pulse at the

wing tip.

Fig. 8 Influence of the speed parameter Vn on the response of a swept aircraft wing (A = 15 °) to

blast pulses at the wing tip.

Fig. 9 Influence of the mass parameter It on the response of a swept aircraft wing (A = 15 °) to

blast pulses at the wing tip.

Fig. 10 Influence of the sweep angle A on the response to sonic-boom pulses at the wing tip.

Fig. 11 Three-dimensional plots depicting the dimensionless plunging _ and pitching

0 deflection time-history of a swept aircraft wing (A = 15°) to blast pressure signature, vs. the

normalized spanwise coordinate y and the dimensionless time z.

Fig. 12 Three-dimensional phase-space portrait depicting the dimensionless plunging deflection

time-history of a swept aircraft wing (A = 15 °) to blast pressure signature, vs. the load factor N

for selected values of the speed parameter.

Fig. 13 Phase-plane (_;_)and phase-space portraits (_;_;N)depicting the dimensionless

plunging deflection time-history of a swept aircraft wing to blast pressure signature, for selected

values of the sweep angle.

Fig. 14 Cone of stability orbits depicting the envelope of the upper bound values of the

dimensionless plunging and pitching deflection time-histories vs. A to blast pressure signatures.
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